Density Ratio Estimation: A Comprehensive Review
نویسندگان
چکیده
Density ratio estimation has attracted a great deal of attention in the statistics and machine learning communities since it can be used for solving various statistical data processing tasks such as non-stationarity adaptation, two-sample test, outlier detection, independence test, feature selection/extraction, independent component analysis, causal inference, and conditional probability estimation. When estimating the density ratio, it is preferable to avoid estimating densities since density estimation is known to be a hard problem. In this paper, we give a comprehensive review of density ratio estimation methods based on moment matching, probabilistic classification, and ratio matching.
منابع مشابه
Density-ratio matching under the Bregman divergence: a unified framework of density-ratio estimation
Estimation of the ratio of probability densities has attracted a great deal of attention since it can be used for addressing various statistical paradigms. A naive approach to density-ratio approximation is to first estimate numerator and denominator densities separately and then take their ratio. However, this two-step approach does not perform well in practice, and methods for directly estima...
متن کاملDensity Ratio Estimation in Machine Learning
Machine learning is an interdisciplinary field of science and engineering that studies mathematical theories and practical applications of systems that learn. This book introduces theories, methods, and applications of density ratio estimation, which is a newly emerging paradigm in the machine learning community. Various machine learning problems such as non-stationarity adaptation, outlier det...
متن کاملDensity Ratio Estimation: A New Versatile Tool for Machine Learning
A new general framework of statistical data processing based on the ratio of probability densities has been proposed recently and gathers a great deal of attention in the machine learning and data mining communities [1–17]. This density ratio framework includes various statistical data processing tasks such as non-stationarity adaptation [18, 1, 2, 4, 13], outlier detection [19–21, 6], and cond...
متن کاملA COMPREHENSIVE STUDY ON THE CONCRETE COMPRESSIVE STRENGTH ESTIMATION USING ARTIFICIAL NEURAL NETWORK AND ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM
This research deals with the development and comparison of two data-driven models, i.e., Artificial Neural Network (ANN) and Adaptive Neuro-based Fuzzy Inference System (ANFIS) models for estimation of 28-day compressive strength of concrete for 160 different mix designs. These various mix designs are constructed based on seven different parameters, i.e., 3/4 mm sand, 3/8 mm sand, cement conten...
متن کاملAn Effective Method of SNR Estimation for LDPC-CPM
The technique of SNR estimation is one of the key technologies in adaptive frequency hopping system. The methods of channel quality estimation for nonlinear continuous phase modulation (CPM) signals have some limitations. Therefore, the algorithm of channel quality estimation for CPM signals is worthy of further study. Some similar phase characteristics between sampling CPM and MPSK motivate us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010